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Temperature fields and their corresponding thermoelastic stresses in tubes in the process of their growth from 

a melt by Stepanov' s method are calculated. Results of the calculations are presented in the form of surfaces 

constructed above a longitudinal section of a tube. The behavior of the maximal stresses as a function of the 

tube length, the middle radius, and the wall thickness is investigated. The influence of the screen on the stress 

distribution is also taken into account. 

Introduction. Tubes grown from a melt by' Stepanov's method have widespread technical application. In 

particular, sapphire tubes are used as bulbs of gas-dJLscharge tubes, in laser engineering, in fine chemical technology, 

and in high-vacuum equipment. Practice has shown that angles of disorientation of smallangle boundaries in sapphire 

tubes may not exceed several degrees, since as the disorientation angles between blocks increase, the strength and 

dielectric properties of these crystals drastically deteriorate. One of the basic mechanisms for formation of the block 

structure of melt-grown crystals, including profiled sapphire ones, is polygonization of dislocations, which begins 

when the dislocation density exceeds some critical value [ 1-3 ]. Dislocations, in turn, form with deformations caused 

by thermal stresses. Calculations of the temperature fields in tubes and their corresponding thermoelastic stresses 

make it possible to obtain initial data for improving and optimizing the process of growth. In the present work 

thermoelastic stresses in sapphire tubes are calculated as a function of the heat transfer conditions and the parameters 

of the tube. Heat transfer with the external medium in the process of growth depends, of course, on whether the 

grown tube is in the zone surrounded by the screen or partially goes out of the zone at some length. Both these cases 

are considered. The developed approach is promising for calculating thermoelastic stresses from the experimental 

dependences of the ambient temperature along the lateral surfaces of the tube. 

The case of a semiinfinite tube using a one-dimensional approximation of the temperature field is given in 

[4 ]. Our work also takes into account the influence of the second end of the tube on the distribution of stresses, which 

can be very large. A number of interesting results on calculation and experimental investigations of thermal fields 

and their related thermoelastic stresses in growing crystals of various shapes is presented in [6 ]. 

1. Mathematical Model. We consider the process of crystallization from a melt, which consists in producing 

a tube having the inner radius R1 and the outer one R2. From the experimental data the pull rate V0 and the 

temperature regime of a thermal node are assumed known. Owing to the smallness of the pull rate we will consider 

the problem of determination of the temperature field T(r, z) in the crystal in a quasistationary approximation. We 

introduce a cylindrical system of coordinates r, z, whose z axis is directed along the symmetry axis of the tube and 

whose origin is at the center of the lower end of the tube. Then the temperature T(r, z) satisfies the following heat 

conduction equation: 

ksv v T  - -  Vop~co~ezvT = 0. (1) 

On the inner (r = R1) and outer (r = R2) surfaces of the tube the heat transfer with the external medium having the 

temperatures O1 and 02 is prescribed: 

OT OT 
- -  ks ~ = hs (T - -  O2)I~R,, ks = hs (T - -  Ot)lr=R ,, (2) 

Or Or 
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where 
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z (T o _ T o ) ,  T? + 7  O <~ z <~ l *, 

T~ - - T ~  T~ l - -  T~ l* l* ~ z ~ l; 
l ~ l *  z -Jr  l ~ 1 "  ' 

z (TO _ TO), T~ +-7;- O ~ z ~ l * ,  

0 0 
T6 - - T 4  T ~ 1 7 6  * 

z +  l * ~ z ~ l .  
l - -  l* l - -  l* ' 

Here the screen height is denoted by/* and the temperatures of the external medium outside and inside the 

tube at z -- 0 are denoted by T O and To; similarly, T 0, T60 and T 0, T O are the temperatures of the external medium 

at z = /*  and z = l respectively. These temperatures can be directly measured in the process of crystal growth. Thus, 

the ambient temperature is prescribed by a piecewise linear function. Besides, on the crystallization front z = 0 and 

on the upper end of the tube z = l the temperatures are prescribed: 

T (r, 0 )  = Tin, T (r, 0 = To, R1 --<~ r <~ R2. (3) 

We represent the solution of problem (1)-(3) as the sum 

r (r, z) = T* (r, z) + T1 (r, z), (4) 

where the function T* (r, z) satisfies just the boundary condition 

OT* OT* 
- -  kS ~ = h s (T*.-- O1)[r=Rt, k s 

ar Or 
= hs (T* - -  02)It--n,. 

We will write such a function, satisfying, among other things, the equation AT* = 0, in the following manner: 

T* (r, z) = A (z) In r + C (z), 

where the coefficients A(z) and C(z) have the form 

A ( z ) = X  O 2 - - 0 1  , 

I 
w i = ~ - - X l n R 1 ,  w ~ =  

R1 

C(z) = O l W 2 +  O~wx , 

W i --~ W~ 

1 + L I n R 2 ,  ~,=  h8 
R~ k8 

Then for the temperature T1 (r, z) we will have a nonhomogeneous heat conduction equation, but, with homogeneous 
boundary conditions on the inner and outer tube surfaces. To determine T1 (r, z), we apply the method of separation 

of variables, according to which the solution T1 (r, z) is represented by a sum: 

T1 (r, z) = ~ Zh (z) Xh (r). 

Here the functions Xk(r) are determined by the formulas 

[[Dh[[ ' k R2 ] - ~  r +y(ixh) No~, R2 r 

(Jo, No are zero-order Bessel functions of the 1st and 2nd kinds respectively). The proper values Pk are solutions of 

the algebraic equation 

vJ~ (N - -  kJo @, t,N, (~) - -  kNo (V) 
=0 ,  
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and the numbers ?(uk) are equal to 

? ( ~ 0  = - btuJ 1 (lxn) - -  kJo (l~th) 

gnNi (~th) kNo (p,,) 

The square of the norm of the function D k is equal to 

IIDhll 2 D =(,a,,)~ ~ / - ~  '2D2 1%'-~2. R~ 
2~.~ ' " 

The function Zk satisfies the differential equation 

Z~ .... xZI~ ~ ~j~Zh = C,,, 

with the boundary conditions 

�9 R2 / , Z =  V~176 (5) 

Zh (0) = (r , , , - -  T* (0), Xh)o -- ah, Zh (1) : (To - - T *  (t), X,,)o = bh. 

Here the scalar product in the space L2(0,/) with the weight p = r is denoted by ( . , . ) p .  The fight side Ck in Eq. 

(5) has the form 

( c~ '), 
C k . . . . .  C{h3)~ (Z - -  [*) + i 

C~, 2), 

where 5(z) is the Dirac delta-function, 

C (i) __ 

+ {(zz (k R~. 

, i~ 2 

al  )~ T~ + T~ T O T O ---  2 - -  3 
I* (w~ + w~) 

f5~ . . . . .  (T~ - V~ .+ (T O - -  T~ w~ 
I* (wl + w=) 

z ~ l * ,  

z > l  ~, 

% [[.{a~(kln R2--k 1) + k[5,} D(u,,) + 
ilD,,[[ )~h 

, . = : ; .  r ~  o 
(1 - -  l*)(w~ - -  w~) ' 

o T o , 13~ = ( r ~  - -  ~) w~ + (Tg  - -  T ~ w~ 

(l  - -  l*)(~.o 1 + ~0.)2) 

(6) 

The coefficients C~ 3) are calculated by formula (6); one needs only to take ( a 2 - - a l )  ins tead  of a i and  (fl2--fll) instead 

of fli and to assume g equal to 1. The boundary values a k and b k are  calculated in an explicit form and are equal to 

where 

1 
a k 

IDkl M 

q- Y1 [ leD (~h) In t72 + k 
L 

_ R2 \ 

R1 D(i~n R~ ) (t~k R1 "~J/, R~. - - ~  , l n R x + D O ' t h ) - D  R~. / J /  

~1 Tra Z~ + T0wl V~ T? 
wl + w~ vol + w2 

The coefficients bk are calculated by the same formulas as ak; one should only take 5 2 and 72 instead of 31 and Yl" 

The values of 6 2 and 72 are calculated by the formulas 

wl  + wl  v01 + w2 

And, finally, the functions Zk(z), by means of the notation introduced above, are written thus: 
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+ bh 

Ok(z, l * ) =  

functions Z (1) are equal to and the 

Xz exp. 
Z~ = 2 

Z,h sh ,hl 
2 

z~ (z) = z 'O~--  Zp ~ + C~ah (z, l*), 

exp ( Xz ) sh ~lh ( l -  z) 
\ 2 } 2 

Z~, ~ = aa rlul 
s h ~  

2 

exp( ~(z~l)2 )sh ~l~Z2 

sh ~hl 
2 

(z - -  l*) 
2 exp 

2 

2 

+ 

, T h = "t/X-V-+ - 4L, 

sh ritz sh ~lh(l--l*) z ~ l * ,  
2 2 ' 

sh ~b'(l-7-z) sh- -~ ' l ,  z>l*, 
2 2 

--1} C~I) + sh rb'z2 {exp- x/* [ 2  nh.X = sh n~ (l--/*)2 eh Tk(/--  l*) ] 2  

- -  Xz exp - -  
2 

sh ~b,z /exp - -  
2 t 

[ - - ~  sh r h ( l - z )  ch rib(l--z) ]/C~ l ) -  
k n ~  2 2 1! 

--xt* [ ~ sh ~lh 2 chr l '~( l - - /*) ]  + 2  

exp --Xl~.IC~2' ] z~t*; + 
2 ] J 

~Z 
exp ~ 2  [ 

z[ I) = sh 
~,~ sh rlkl 

2 

+ca ~"t* ]-- l} C~l) + sh 2 { e x p - -  

+ c h ~ J + e x p  --~l'2 

--- sh ...~hz exp 
2 - - - 7  ~1~ 

q - e x p - - - ~ t  h j,  

rib(l--z)2 {exp --  X/--------~* [ - -~-  sh...~lh/* + 2  2 

Xz [ X sh.~hZ + 
2 [ TIh 2 

[ X.aqh sh ~lkl*. + c h 2  llfl* ]} C ~ ) - 2  

sh ~h(l--z) eh ~K(/--z) | 
2 2 J + 

z >  l*. 

(7) 

In order to calculate the thermoelastic stress-strain state, we represent the tube as a circular cylindrical shell 
RI+R 2 

of constant thickness. We denote the shell thickness by h=R I-R2, the middle- surface radius by R=-----~----, the 

axial and radial travel of the middle surface by u and co respectively, and the meridian and radial normal stresses 
by a m and a~. 

The temperature stresses a m and cry are determined from the known formulas [5 ] 
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Fig. 1. Typical distribution of the normal meridian stress am: a) without screen; 

b) with a screen, am, kg/mm2; z, cm; x, mm. 
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Fig. 2. Typical distribution of the normal hoop stress %: a) without screen; b) 

with a screen. %,  kg /mm 2. 

E 

0 V - - -  ~ 
1 - -  V 2 

u = .i l -(1 + v)~--v 

du d%3 co ] 
X + v - - - - ( l  + v )  o~tT 

dz dz 2 R 

d%~ o~ ] du _ _ v x ~ +  - - ( l + v )  atT 
dz dz 2 ~ ' 

c~ ]de,  M = - - D [  d2(~ "] 
. 

R dz 2 + (1 + v) cz,~ 
The quantity x in formulas (8) is reckoned from the middle surface of the tube (-0.5h<_x<_O.5h). 
The components of the vector of travel w satisfy the equation 

d~~ -{- 4k4r -~ Ehat T - - ( 1  + v) a t ~  = [(z). 
dz~ DR dz 2 

In Eq. (9) the expressions f o r t  andT are defined by the equalities 

- - = - -  T(R-4-x, z) dx, ~1": 12 h/2 h h 3 T (R + x, z) xdx. 
--hie --hi2 

The boundary conditions for Eq. (9) are formulated for a shell with free edges, i.e., 

dM 
N I = ~ = O ,  z = 0 ,  I. 

dz 

We write the general solution of Eq. (9) as 

(9) 

(10) 
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Fig. 3. Dependence of 1% I max (a) and I cr m I max (b) on the crystal length. 

1% 1 max, I crml max, kg/mmZ; log l, cm. 

1 
co (z) = C1 sh kz cos kz + C2 " y  [oh kz sin kz + sh kz cos kz] + 

+ C3 ~ 2  sh kz sin kz + C~ --~ [ch kz sin kz ~ sh kz cos kz] q- 

Z 

1 .t' [ch k (z - -  [) sin (z - -  [) - -  sh (z ~) cos (z - -  [)] [ (~) d[. 
+ 0 

The coefficients C1, C2, C3, C4 are found from boundary conditions (10). In formulas (8) and (9) by k, D we denoted 

k ~ =  3 ( 1 - - v  *) D :  Eha 
h2R 2 12 ( 1 - -  v 2) 

We give the characteristics of the materials and parameters of the process: 

T~ ~ ks=0.015 cal/(cm, sec. deg); ps=4 g/cm3; a t = 5  �9 10 - 6  deg-  1; hs= 1.2.10 - 2  cal/(cm 2. sec. deg); 

Cps=0.33 cal/(g, deg); E=5.104 kg/mm2; v=0.25; Vo=3.3" 10 -3 cm/sec .  

It should be noted that the chosen heat-transfer coefficient takes into account the overall heat removal by radiation 

and convection. 

2. Basic Results and Discussion. A typical distribution of the meridian amand hoop % normal stresses in a 

longitudinal section of the tube is shown in Figs. 1 and 2. The length of the grown tube is l = 15 cm for the screen 

height of l*= 8 cm. For clarity the same figures show the stresses in tubes at the same ambient temperatures near the 

crystallization front T O and T O and near the upper end of the tube T O and T O but in the absence of the screen. As is 

evident from the figures, the presence of the screen gives rise to a "burst" of stresses, which rapidly drops with 

distance from/*. Although the values of the stresses near/* can be very large, in return in this case the maximal 

values of the stresses become roughly half as large. 
For a tube which is entirely in the screen zone we perform a subsequent analysis of the behavior of the stresses 

as a function of the heat transfer conditions, the tube thickness, and the value of the middle radius. An increase in 

the heat transfer naturally increases the temperature drop across the tube wall. Near the crystallization front at 

T~176 and T~176 the radial temperature gradients do not exceed 10-15 ~ At To= 1900 ~ the 

radial temperature gradients attain 70~ Correspondingly, the maximal hoop stresses on the lower end of the 

crystal (crystallization front) in both cases for a tube 5 cm long have the values I cr l  =5.12 and 16.4kg/mm 2. Near 

the crystallization front and the upper end of the tube there are small regions where the normal stresses % rapidly 
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change from negative to positive values and then decrease to values close to zero, remaining such over practically the 

entire length of the tube. 

The largest values of the stresses I~1  are attained on the crystal ends, and the largest values of l aml are 

attained near the ends on the tube surface, and their behavior will be considered. 

We denote the maximal value of l a I on the crystallization front by l ab~ I max, that on the upper end of the 

tube b y  I cr~lrnax, and the maximal  values of l aml near the lower and upper ends of the tube, respectively, by 

I Obm l max and I atm l max- 

Figure 3 shows the dependences of Icrblmax, I ~ l r n a x  , IObmlmax, I Jm l max on the length of the grown crystal. 

From the shown plots it is evident that, beginning from some length (3.5 cm), the stresses I oh~ I max and I Ohm l are m a x  

almost constant and the stresses I o / I  max and I otm l max rapidly decrease. On a small length (up to 3.5 cm) there are 

portions of drastic growth and reduction of all stresses, their values not being smaller than on lengths larger than 

3.5cm. Therefore, at the initial stage of growth, when the crystal has a small length, the influence of the stresses 

~ a n d  atm near the end is important for the formation of the crystal structure. Since with an increase in the upper 

tube length these stresses are removed, then, beginning with some length, the influence of these stresses on the 

crystal structure will be insignificant. Thus, the conditions of formation of the dislocation structure with allowance 

for polygonization and the block structure in tubes grown from a small bar seed and those built-up on a long tubular 

seed crystal with the same diameter are substantially different. The obtained results permit the conclusion that when 

growing tubes it is preferable to take a tubular seed; its length should not be smaller than some length (in this specific 

case 3.5 cm). 

We traced the dependences of I ~ I max and I a m I max on the middle radius of the tube R with a constant tube 

wall thickness h. It turned out that an increase in the radius produces a substantial increase in the stress I c r  I max, 

the change in the stress I a m I max being insignificant. 

Apart from this, the dependences of these stresses on the wall thickness h with constant R were investigated. 

Calculations showed that the s t r e s se s  I cr~lrnax and I Crmlmax monotonically decrease as the tube wall thickness 

increases. 

A calculation of stresses can be performed on the basis of experimentally determined values of Ol(z ) and 

O2(z ). Besides, by varying these dependences it is possible to determine the optimal temperature distribution along 

the furnace for obtaining the minimal stresses in the tube with heat removal which is sufficient to realize the 

crystallization process. 

C O N C L U S I O N S  

1. The behavior of thermoelastic stresses is substantially different in building up a crystal on a small bar 

seed or on a long tubular seed, whose transverse dimension corresponds to the grown crystal. 

2. To grow a tube it is preferable to take a tubular seed; its length should not be smaller than some value. 

3. An increase in the heat transfer from the lateral surfaces of the tube causes an increase in the maximal 

hoop and meridian stresses. 

4. As the length of the grown tube increases, stabilization of the hoop stress on the crystallization front and 

of the maximal meridian stress near the front occurs. 
5. As the wall thickness increases, the level of the maximal values of the hoop and meridian stresses falls. 

An increase in the tube diameter at a constant tube thickness causes an increase in the hoop stress and practically 

does not change the value of the meridian stress. 
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N O T A T I O N  

T, temperature; T O, melting temperature; ks, thermal conductivity coefficient; at, thermal expansion 

coefficient; Cps , heat capacity; hs, heat-transfer coefficient; E, Young's modulus; v, Poisson coefficient; V0, growth 

rate; 02, 02, temperatures of the external medium; am, normal meridian stress; or, normal hoop stress; u, w, axial 

and radial travels of the middle surface; R1, R2, inner and outer radii of the tube; p, density. 
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